
 25 January 2001

Using the Spiral M

Understanding the Spiral Model
as a Tool for Evolutionary Acquisition

Barry Boehm, USC, CSE
Wilfred J. Hansen, Carnegie Mellon Univ., SEI

January, 2001

Since its original publication [Boehm 88], the spiral development model diagrammed in Figure 1 has
been used successfully in many defense and commercial projects. To extend this base of success, the

Department of D
"evolutionary acq
particular, DoD I

"There are
approach i
is divided

Here, a block cor
of a project. The
RQTS PLAN
LIFE CYCLE
 PLAN

CONCEPT OF
OPERATION

EMULATIONS MODELS BENCHMARKS

REVIEW

COMMITMENT,
PARTITION

RISK ANALYSIS

RISK
ANAL.

RISK ANALYSIS

RISK ANALYSIS

PROTO-
TYPE1

PROTOTYPE3

OPERATIONAL
PROTOTYPE

EVALUATE
ALTERNATIVES
IDENTIFY,
RESOLVE RISKS

PROGRESS
THROUGH
STEPS

CUMULATIVE
COST

DETERMINE
OBJECTIVES,
ALTERNATIVES,
CONSTRAINTS

DEVELOP-
MENT PLAN

INTEGRATION
AND TEST

PLAN
DESIGN VALIDATION
AND VERIFICATION

REQUIREMENTS
VALIDATION

SOFTWARE
PRODUCT
DESIGN

DEVELOP, VERIFY
NEXT LEVEL PRODUCT

SOFTWARE
RQTS

IMPLEMEN-
TATION

ACCEPT-
ANCE TEST

INTEGRA-
TION AND

TEST

UNIT
TEST

CODE

DETAILED
DESIGN

PROTOTYPE2

PLAN NEXT
PHASES

Figure 1: Original Diagram of Spiral Development
odel for Evolutionary Acquisition 1

efense (DoD) has recently rewritten the defense acquisition regulations to incorporate
uisition," an acquisition strategy designed to mesh well with spiral development. In

nstruction 5000.2 subdivides acquisition [DoD 00]:

 two ... approaches, evolutionary and single step to full capability. An evolutionary
s preferred. … [In this] approach, the ultimate capability delivered to the user
 into two or more blocks, with increasing increments of capability." (p. 20)

responds to a single contract, although one contractor may be chosen for multiple blocks
text goes on to specify the use of spiral development within blocks:

 25 January 2001

Using the Spiral Model for Evolutionary Acquisition 2

"For both the evolutionary and single-step approaches, software development shall follow
an iterative spiral development process in which continually expanding software versions
are based on learning from earlier development." (p. 20)

Given this reliance of DoD on spiral development it is appropriate to define that method in depth. This
paper does so. A follow-on article will address the relationships among spiral development, evolutionary
acquisition, and the Integrated Capability Maturity Model (CMMI).

In anticipation of the DoD 5000 series, the USC Center for Software Engineering (CSE) and the CMU
Software Engineering Institute (SEI) held workshops in February and September 2000. Their objectives
were to identify a set of critical success factors and recommended approaches for spiral development and
its application to evolutionary acquisition. Their results appear in two reports, [Hansen 00] and [Hansen
01] and are available on the workshop website http://www.sei.cmu.edu/cbs/spiral2000. The first author’s
presentation at the February workshop was converted to a report [Boehm 00b] and forms the basis for
much of this paper. For details and further references, see that paper.

"Spiral Development" Definition and Context
We can begin with a high-level definition of the spiral development model:

The spiral development model is a risk-driven process model generator that is used to
guide multi-stakeholder concurrent engineering of software-intensive systems. It has
two main distinguishing features. One is a cyclic approach for incrementally growing a
system's degree of definition and implementation while decreasing its degree of risk.
The other is a set of anchor point milestones for ensuring stakeholder commitment to
feasible and mutually satisfactory system solutions.

The highlighted terms deserve further explanation:

Risks are situations or possible events that can cause a project to fail to meet its goals. They
range in impact from trivial to fatal and in likelihood from certain to improbable. Since risk
considerations dictate the path a development must take, it is important that those risks be
cataloged candidly and completely. See the references for a taxonomy of risks [Carr 93]
and a method for identifying them [Williams 99].

A process model answers two main questions:
• What should be done next?
• For how long should it continue?

Under the spiral model the answers to these questions are driven by risk considerations and
vary from project to project and sometimes from one spiral cycle to the next. Each choice
of answers generates a different process model.

The cyclic nature of the spiral model is illustrated in Figure 1. Rather than develop the
completed product in one step, multiple cycles are performed with each taking steps
calculated to reduce the most significant remaining risks.

Each anchor point milestone is a specific artifact or condition which must be attained at
some point. The sequence of three anchor point milestones—"LCO", "LCA", and "ICO"—

http://www.sei.cmu.edu/activities/cbs/spiral 2000

 25 January 2001

Using the Spiral Model for Evolutionary Acquisition 3

is defined in Spiral Essential 5, below. These milestones impel the project toward
completion and offer a means to compare progress between one project and another.

Many aspects of spiral development are omitted in the above definition. The remainder of this paper
expands the definition by describing six essential aspects that every proper spiral process must exhibit.
These Essentials are sketched in Figure 2. Each subsequent section describes a Spiral Essential, the
critical-success-factor reasons why it is necessary, and the variant process models it allows. Examples are
given. Other process models which are precluded by the Spiral Essential are described. Because these
may seem to be instances of the spiral model, but lack necessary Essentials and thus risk failure, they are
called “hazardous spiral look-alikes."

1. Concurrent determin-
ation of key artifacts

3. Risk drives
level of effort

4. Risk drives
degree of detail

2. Stakeholder review
and commitment

5. Aim at anchor
point milestones

6. Emphasis on system
and life cycle artifacts

stakeholders

risks

level of effort

degree of detail
milestone

artifacts

Figure 2: Pictorial sketch of the six spiral Essentials

Spiral Essential 1: Concurrent Determination of Key Artifacts
(Operational Concept, Requirements, Plans, Design, Code)
For a successful spiral effort, it is vital to determine certain key artifacts concurrently and not
sequentially. These key artifacts are the operational concept, the system and software requirements, the
plans, the system and software architecture and design, and the code components including COTS, reused
components, prototypes, success-critical components, and algorithms. Ignoring this Essential by
sequentially determining the key artifacts will prematurely overconstrain the project, and often extinguish
the possibility of developing a product satisfactory to the stakeholders.

Variants: Within the constraints of this Essential, variation is possible in the product and process
internals of the concurrent engineering activity. For a low technology, interoperability-critical system, the
initial spiral products will be requirements-intensive. For a high-technology, more standalone system, the
initial spiral products will be prototype-code-intensive. Also, the Essential does not dictate the number of

 25 January 2001

Using the Spiral Model for Evolutionary Acquisition 4

mini-cycles (e.g., individual prototypes for COTS, algorithm, or user-interface risks) within a given spiral
cycle.

Example: One-Second Response Time

Examples of failure due to omission of this Essential are: premature commitments to hardware platforms,
incompatible combinations of COTS components, and requirements whose achievability has not been
validated. For instance, in the early 1980s, a large government organization contracted with TRW to
develop an ambitious information system for more than a thousand users. This system was to be
distributed across a campus and offer powerful query and analysis access to a large and dynamic database.
Based largely on user need surveys and an oversimplified high-level performance analysis, TRW and the
customer fixed into the contract a requirement for a system response time of less than one second.

Two thousand pages of requirements later, the software architects found that subsecond performance
could only be provided via a highly customized design that attempted to cache data and anticipate query
patterns so as to be able to respond to each user within one second. The resulting hardware architecture
had more than 25 super-minicomputers busy caching data according to algorithms whose actual
performance defied easy analysis. Estimated cost: $100 million, see the upper arc in Figure 2.

$100M

$50M

Custom
many cache

Modified
Client-Server

1 2 3 4 5

Response Time
()

Original Spec After Prototyping

Figure 2: Two System Designs: Cost vs. Response Time

Faced with an exorbitant cost, the customer and developer decided to develop and user-test a prototype.
The results showed that a four-second response time would satisfy users 90 percent of the time. This
lower performance could be achieved with a modified client-server architecture, cutting development
costs to $30 millionas shown by the lower arc in the Figure [Boehm 00a]. Thus, the premature
specification of a one-second response time introduced the risk of an overly expensive system.

 25 January 2001

Using the Spiral Model for Evolutionary Acquisition 5

Hazardous Spiral Look-Alike: Violation of Waterfall Assumptions

Essential 1 excludes the use of an incremental sequence of waterfall developments in the common case
where there is a high risk of violating the assumptions underlying the waterfall model. These
assumptions are that the requirements are pre-specifiable, unchanging, and satisfactory to all stakeholders,
and that a well-understood architecture can meet these requirements. These assumptions must be met by a
project if the waterfall model is to succeed. If all are true, then it is a project risk not to specify the
requirements: the spiral-dictated risk analysis results in a waterfall approach for this project. If any
assumption is false, then a waterfall approach will commit the project to troublesome assumptions and
requirements mismatches. Here are typical cases that violate waterfall assumptions:

Requirements are not generally denumerable for new user-interactive systems, because of the
IKIWISI syndrome. When asked for their required screen layout for a new decision-support
system, users will generally say, “I can’t tell you, but I’ll know it when I see it (IKIWISI).” In such
cases, a concurrent prototyping/requirements/architecture approach is necessary.

Inconstant requirements are well illustrated by electronic commerce projects, where the volatility of
technology and the marketplace is high. The time it takes to write detailed requirements is not a
good investment of the scarce time-to-market available when it is likely the requirements will
change more than once downstream.

The architecture and its implications were the downfall of the one-second response time example.

Spiral Essential 2: Each Cycle Does Objectives, Constraints,
Alternatives, Risks, Review, Commitment to Proceed
Spiral Essential 2 identifies the activities that need to be done in each spiral cycle. These include
consideration of critical-stakeholder objectives and constraints; elaboration and evaluation of project and
process alternatives for achieving the objectives subject to the constraints; identification and resolution of
risks attendant on choices of alternative solutions; and stakeholders’ review and commitment to proceed
based on satisfaction of their critical objectives and constraints. If all of these are not considered, the
project may be prematurely committed to alternatives that are either unacceptable to key stakeholders or
overly risky.

Variants: Spiral Essential 2 does not mandate particular generic choices of risk resolution techniques,
although guidelines are available [Boehm 89]. Nor does this Essential mandate particular levels of effort
for the activities performed during each cycle. Levels must be balanced between the risks of learning too
little and the risks of wasting time and effort gathering marginally useful information.

Example: Windows-Only COTS

Ignoring Essential 2 can lead to wasted effort in elaborating an alternative that could have been shown
earlier to be unsatisfactory. One of the current USC digital library projects is developing a web-based
viewer for oversized artifacts (e.g., newspapers, large images). The initial prototype featured a
tremendously powerful and high-speed viewing capability, based on a COTS product called ER Mapper.
The initial project review approved selection of this COTS product, even though it only ran well on
Windows platforms, and the Library had significant Macintosh and UNIX user communities. This

 25 January 2001

Using the Spiral Model for Evolutionary Acquisition 6

decision was based on initial indications that Mac and UNIX versions of ER Mapper would be available
"soon." These indications proved unreliable, however, and the anticipated delay became quite lengthy. So
after wasting considerable effort on ER Mapper, it was dropped in favor of a less powerful but fully
portable COTS product, Mr. SID. The excess effort could have been avoided had the review team
included stakeholders from the Mac and UNIX communities on campus who would have done the
necessary investigations earlier.

Hazardous Spiral Look-Alike: Excluding Key Stakeholders

Essential 2 excludes the process model of organizing the project into sequential phases or cycles in which
key stakeholders are excluded. These omissions are likely to cause critical risks to go undetected.
Examples are excluding developers from system definition, excluding users from system construction, or
excluding system maintainers from either definition or construction. Excluding developer participation in
early cycles can lead to project commitments based on unrealistic assumptions about developer
capabilities. Excluding users or maintainers from development cycles can lead to win-lose situations,
which generally devolve into lose-lose situations.

Spiral Essential 3: Level of Effort Driven by Risk Considerations
Spiral Essential 3 dictates the use of risk considerations to answer the difficult questions of how-much-is-
enough of a given activity. How much is enough of domain engineering? prototyping? testing?
configuration management? and so on. The recommended approach is to evaluate Risk Exposure (RE),
which is computed as Probability (Loss) • Size (Loss). There is risk of project error REerror from doing
too little effort and project delay REdelay from doing too much. Ideally, the effort expended will be that
which minimizes the sum REerror + REdelay. This approach applies to most activities that are undertaken
in a spiral development.

Variants to be considered include the choice of methods used to pursue activities (e.g., MBASE/WinWin,
Rational RUP, JAD, QFD, ESP) and the degree of detail of artifacts produced in each cycle. Another
variant is an organization's choice of particular methods for risk assessment and management.

Example: Pre-Ship Testing

Risk considerations can help determine “how much testing is enough” before shipping a product. The
more testing that is done, the lower becomes REerror due to defects, as discovered defects reduce both the
size of loss due to defects and the probability that undiscovered defects still remain. However, the more
time spent testing, the higher is REdelay from loses due to both competitors entering the market and
decreased profitability on the remaining market share.

 25 January 2001

Using the Spiral Model for Evolutionary Acquisition 7

Risk Exposure
RE =
Size (Loss) •
Pr (Loss)

Amount of testing; Time to market

10

8

6

4

2

REdelay
Market share losses

RE (total)

REerror
Defect losses

Figure 3: Pre-Ship Test Risk Exposure

As shown in Figure 3, the sum of these risk exposures achieves a minimum at some intermediate level of
testing. The location of this minimum-risk point in time will vary by type of organization. For example, it
will be considerably shorter for a “dot.com” company than it will for a safety-critical product such as a
nuclear power plant. Calculating the risk exposures also requires an organization to accumulate a fair
amount of calibrated experience on the probabilities and size of losses as functions of test duration and
delay in market entry.

Hazardous Spiral Look-Alikes: Risk Insensitivity

Hazardous spiral model look-alikes excluded by Essential 3 are
• risk-insensitive evolutionary development (e.g., neglecting scalability risks)
• risk-insensitive incremental development (e.g., suboptimizing during increment 1 with an ad hoc

architecture which must be dropped or heavily reworked to accommodate future increments)
• impeccable spiral plans with no commitment to managing the risks identified.

Spiral Essential 4: Degree of Detail Driven by Risk Considerations
Where Essential 3 circumscribes efforts, Essential 4 circumscribes the results of those efforts; it dictates
that risk considerations determine the degree of detail of artifacts. This means, for example, that the
traditional ideal of a complete, consistent, traceable, testable requirements specification is not a good idea
for certain product components, such as a graphic user interface (GUI) or COTS interface. Here, the risk
of precisely specifying screen layouts in advance of development involves a high probability of locking
an awkward user interface into the development contract, while the risk of not specifying screen layouts is
low, given the general availability of flexible GUI-builder tools. Even aiming for full consistency and
testability can be risky, as it creates a pressure to prematurely specify decisions that would better be
deferred (e.g., the form and content of exception reports). However, some risk patterns make it very
important to have precise specifications, such as the risks of safety-critical interface mismatches between
hardware and software components, or between a prime contractor’s and a subcontractor’s software.

This guideline shows when it is risky to over-specify and under-specify software features:

 25 January 2001

Using the Spiral Model for Evolutionary Acquisition 8

• If it's risky to not specify precisely, DO specify
(e.g., hardware-software interface, prime-subcontractor interface)

• If it's risky to specify precisely, DO NOT specify
(e.g., GUI layout, COTS behavior)

Variants: Unconstrained by Essential 4 are the choices of representations for artifacts (SA/SD, UML,
MBASE, formal specs, programming languages, …).

Example: Risk of Precise Specification

One editor specification required that every operation be available through a button on the window. As a
result, the space available for viewing and editing became unusably small. The developer was precluded
from moving some operations to menus because the GUI layout had been specified precisely at an early
step. (Of course, given too much freedom programmers can develop very bad GUIs. Stakeholder review
is necessary to avoid such problems.)

Hazardous Spiral Look-Alikes: Insistence on Complete Specifications

Is it hazardous to undertake a spiral development project wherein complete specifications are pre-
specified for all aspects. Aspects such as those described in the example should be left to be further
defined during project exploratory phases.

Spiral Essential 5: Use Anchor Point Milestones: LCO, LCA, IOC
A major difficulty of the original spiral model was its lack of intermediate milestones to serve as
commitment points and progress checkpoints. This difficulty has been remedied by the development of a
set of anchor point milestones:

LCO - Life Cycle Objectives - what should the system accomplish
LCA - Life Cycle Architecture - what is the structure of the system
IOC - Initial Operating Capability - the first released version

(The artifacts for each are provided by an electronic process guide [Mehta 99].)

The focus of the LCO review is to ensure that at least one architecture choice is viable from a business
perspective. The focus of the LCA review is to commit to a single detailed definition of the project. The
project must have either eliminated all significant risks or put in place an acceptable risk-management
plan. The LCA milestone is particularly important, as its pass/fail criteria enable stakeholders to hold up
projects attempting to proceed into evolutionary or incremental development without a life cycle
architecture. Each milestone is a stakeholder commitment point: at LCO the stakeholders commit to
support architecting; at LCA they commit to support initial deployment; at IOC they commit to support
operations. Together the anchor point milestones avoid analysis paralysis, unrealistic expectations,
requirements creep, architectural drift, COTS shortfalls and incompatibilities, unsustainable architectures,
traumatic cutovers, and useless systems.

Variants: One appropriate variant of Essential 5 is the number of spiral cycles between anchor points.
Another possible variant is to merge anchor points. In particular, a project using a mature and
appropriately scalable fourth generation language (4GL) or product line framework will have already
determined its architecture by its LCO milestone, enabling the LCO and LCA milestones to be merged.

 25 January 2001

Using the Spiral Model for Evolutionary Acquisition 9

Example: Stud Poker Analogy

A valuable aspect of the spiral model is its ability to support incremental commitment of corporate
resources rather than requiring a large outlay of resources to the project before its success prospects are
well understood. Funding a spiral development can thus be likened to the game of stud poker. In that
game, you put a couple of chips in the pot and receive two cards, one hidden and one exposed. If your
cards don't promise a winning outcome, you can drop out without a great loss. This corresponds to
cancelling a project at or before LCO. If your two cards are both aces, you will probably bet on your
prospects aggressively (or less so if you see aces among other players' exposed cards). Dropping out of
the second or third round of betting corresponds to cancelling at or before LCA. In any case, based on
information available, you can decide during each round whether it's worth putting more chips in the pot
to buy more information or whether it's better not to pursue this particular deal or project.

Hazardous Look-Alike: Evolutionary Development without Life Cycle Architecture

The LCO and LCA milestones' pass-fail criteria emphasize that the system's architecture must support not
just the initial increment's requirements, but also the system's evolutionary life-cycle requirements. This
avoids the hazardous spiral look-alike of an initial increment optimized to provide an impressive early
system demonstration or limited release, but not architected to support full-system requirements for
security, fault-tolerance, or scalability to large workloads. Other important considerations for LCA are
that the initial release be good enough to ensure continued key stakeholder participation, that the user
organizations are sufficiently flexible to adapt to the pace of system evolution, and that legacy-system
replacement be well thought out. Ignoring these aspects lead to other hazardous spiral look-alike
processes.

Spiral Essential 6: Emphasis on System and Life Cycle Activities and
Artifacts
Spiral Essential 6 emphasizes that spiral development of software-intensive systems needs to focus not
just on software construction aspects, but also on overall system and life cycle concerns. Will the product
satisfy its stakeholders? Meet cost and performance goals? Integrate with existing business practices?
Adapt to changes in the customer organization’s environment? Software developers are particularly apt to
fall into the oft-cited trap: “If your best tool is a hammer, the world you see is collection of nails.” Writing
code may be a developer's forte, but it stands in importance to the project as do nails to a house.

Variants: The model's use of risk considerations to drive solutions makes it possible to tailor each spiral
cycle to whatever mix of software and hardware, choice of capabilities, or degree of productization is
appropriate.

Example: “Order Processing”

A good example of failure to consider the whole system occurred with the Scientific American order
processing system sketched in Figure 4 [Boehm 81]. Scientific American had hoped that computerizing
the functions being performed on tabulator-machines would reduce its subscription processing costs,
errors, and delays. Rather than analyze the sources of these problems, the software house jumped in and
focused on the part of the problem having a software solution. The result was a batch-processing

 25 January 2001

Using the Spiral Model for Evolutionary Acquisition 10

computer system whose long delays put extra strain on the clerical portion of the system that had been the
major source of costs, errors, and delays in the first place. The software people looked for the part of the
problem with a software solution (their “nail”), pounded it in with their software hammer, and left
Scientific American worse off than when they started.

RESULTS:
•MORE TRIVIAL ERRORS•GREATER DELAYS•POOR EXCEPTION-HANDLING•CUMBERSOME INPUT CONTROLS•MORE LABOR-INTENSIVE

CASHIER'S
CAGE TAB RUNS

WORK STATIONS:
SORT, CODE, PUNCH,
VERIFY, BATCH

OLD SYSTEM

INCOMING
MAIL

ORDERS

NON-ORDERS

CARDS

(minutes)

BILLS, LABELS, REPORTS

INVALID INPUTS

FIX BY EYEBALL,
KEYPUNCH

WORK
STATIONS
(SAME)

CARD-TO-
TAPE

IBM 360/30:
CHECK VALID INPUTS
UPDATE MASTER FILE
GENERATE BILLS,
 LABELS, REPORTS

NEW
MASTER

(hours)
LOCATE DECKS
RECONCILE WITH FORMS
KEYPUNCH AND REPLACE
 CARDS

CARDSORDERS

NON-ORDERS

INCOMING
MAIL

NEW SYSTEM

BILLS,
LABELS,
REPORTS
INVALID
INPUTS

MASTER FILE

CASHIER'S
CAGE

TRWTRWTRWTRW

Figure 4: Scientific American Order Processing

This kind of outcome would have resulted even if the software automating the tabulator-machine
functions had been developed in a risk-driven cyclic approach. However, its Life Cycle Objectives
milestone package would have failed its feasibility review, as it had no system-level business case
demonstrating that the development of the software would lead to the desired reduction in costs, errors,
and delays. Had a thorough business case analysis been done, it would have identified the need to re-
engineer the clerical business processes as well as to automate the manual tab runs.

Hazardous Spiral Look-Alikes: Logic-Only OO Designs

Models excluded by Essential 6 include most published object-oriented analysis and design (OOA&D)
methods, which are usually presented as abstract logical exercises independent of system performance or
economic concerns. For example, in a recent survey of 16 OOA&D books, only six listed the word
“performance” in their index, and only two listed “cost.”

Using the Spiral Model for Evolutionary Acquisition
Both the February and September workshops had working groups on the relationships between spiral
development and evolutionary acquisition. A primary conclusion was that the relationships differ across
two major DoD acquisition sectors:

• Information systems, such as C4ISR systems, logistics systems, and management systems, in
which spiral and evolutionary models coincide well.

 25 January 2001

Using the Spiral Model for Evolutionary Acquisition 11

• Software-intensive embedded hardware-software systems, in which the software aspects best
follow a spiral approach, but the hardware aspects need to follow a more sequential approach
to accommodate lead times for production facilities, production subcontracts, and long-lead
critical-component orders.

Even for embedded systems, however, spiral approaches can be helpful for synchronizing hardware and
software processes, and for determining when to apply an evolutionary, incremental, or single-step
acquisition strategy. For example, Xerox's Time-to-Market process uses the spiral anchor point
milestones as hardware-software synchronization points for its printer business line [Hantos 00]. Rechtin
and Maier adopt a similar approach in their book, the Art of Systems Architecting [Rechtin 96].

A good example of the use of a risk-driven spiral approach to determine a preferred software/system
acquisition strategy was originally developed for DoD's MIL-STD-498, and subsequently incorporated in
IEEE/EIA 12207 [IEEE/EIA 98]. This approach distinguishes among single-step (once-through or
waterfall), incremental, and evolutionary acquisition processes as shown in Table 1. Thus, evolutionary
acquisition avoids defining all requirements first, and proceeds in multiple development cycles, some of
which involve distribution and usage of initial and intermediate operational capabilities.

Table 1. Evolutionary Acquisition Distinctions [IEEE/EIA 98]

Development strategy
Define all

requirements first?
Multiple develop-

ment cycles?
Distribute interim

software?

Once-Through (Waterfall) Yes No No

Incremental (Preplanned
Product Improvement)

Yes Yes Maybe

Evolutionary No Yes Yes

Table 2 shows how a spiral risk analysis is performed during early integrated product and process
definition cycles to select the most appropriate acquisition process for a system. The example shown in
Table 2 is for a fairly large, high-technology C4ISR system. For such a system, the high risks of poorly-
understood requirements and rapid technology changes push the decision away from once-through or
incremental acquisition, while the needs for an early capability and for user feedback on full requirements
push the decision toward evolutionary acquisition. If the system had been a small, lower-technology
embedded system where all capabilities are needed at first delivery, the risk and opportunity factors would
push the decision away from evolutionary and incremental acquisition toward once-through or single-step
acquisition.

 25 January 2001

Using the Spiral Model for Evolutionary Acquisition 12

Table 2. Spiral Risk Analysis for Process Selection [IEEE/EIA 98]

Risk Item Risk Opportunity Item Opp.
(Reasons against this strategy)

Level (Reasons to use this strategy)

Level

Once-Through Acquisition
Requirements are not well understood H User prefers all capabilities at first delivery M
Rapid changes in technology anticipated -
may change the requirements

H User prefers to phase out old system all at
once

L

System too large to do all at once M
Limited staff or budget available now M

Incremental Acquisition
Requirements are not well understood H Early capability is needed H
User prefers all capabilities at first delivery M System breaks naturally into increments M
Rapid changes in technology anticipated -
may change the requirements

H Funding/staffing will be incremental H

Evolutionary Acquisition
User prefers all capabilities at first delivery M System breaks naturally into increments M

Early capability is needed H
Funding/staffing will be incremental H

User feedback and monitoring of technology
changes is needed to understand full
requirements

H

Summary
This paper has defined the spiral development model as a risk-driven process model generator with cyclic
process execution and a set of three anchor point milestones. The definition was sharpened by presenting
a set of six “essential” attributes; that is, six attributes which every spiral development process must
incorporate. These Essentials are summarized in Table 3. Omission of any one of the Essentials gives rise
to a process model which is cyclic or iterative, but is not an example of spiral development. Such a model
is called a "hazardous spiral look-alikes." Each was described and pilloried as part of describing the
Essential it violates.

Spiral development works fairly seamlessly with evolutionary acquisition of information systems. For
evolutionary acquisition of software-intensive embedded hardware-software systems, a mix of spiral and
sequential processes is often needed. Even here, however, the spiral anchor points and risk-driven
process selection approach are useful for determining how best to synchronize the hardware and software
processes.

 25 January 2001

Using the Spiral Model for Evolutionary Acquisition 13

Table 3: Summary

Spiral Model Essential Element
Why essential Variants Hazardous look-alikes

1. Concurrent determination of key artifacts
Avoids premature sequential commitments to
system requirements, design, COTS, combination
of cost / schedule / performance

Relative amount of each artifact developed in each
cycle
Number of concurrent mini-cycles in each cycle

Incremental sequential waterfalls
with significant COTS, user
interface, or technology risks

2. Each cycle does objectives, constraints, alternatives, risks, review, and commitment to proceed
Avoids commitment to stakeholder-unacceptable
or overly risky alternatives
Avoids wasted effort in elaborating unsatisfactory
alternatives

Choice of risk resolution techniques: prototyping,
simulation, modeling, benchmarking, reference
checking, etc.
Level of effort on each activity within each cycle

Sequential spiral phases with key
stakeholders excluded from phases

3. Level of effort driven by risk considerations
Determines “how much is enough” of each activity:
domain engineering, prototyping, testing, CM, etc.
Avoids overkill or belated risk resolution

Choice of methods used to pursue activities:
MBASE/WinWin, Rational RUP, JAD, QFD, ESP, …
Degree of detail of artifacts produced in each cycle

Risk-insensitive evolutionary or
incremental development.
Impeccable spiral plan with no
commitment to managing risks

4. Degree of detail driven by risk considerations
Determines “how much is enough” of each artifact
(OCD, Requirements, Design, Code, Plans) in
each cycle
Avoids overkill or belated risk resolution

Choice of artifact representations (SA/SD, UML,
MBASE, formal specs, programming languages, etc.)

Insistence on complete
specifications for COTS, user
interface, or deferred-decision
situations

5. Use of anchor point milestones: LCO, LCA, IOC
Avoids analysis paralysis, unrealistic expectations,
requirements creep, architectural drift, COTS
shortfalls and incompatibilities, unsustainable
architectures, traumatic cutovers, and useless
systems

Number of spiral cycles or increments between anchor
points
Situation-specific merging of anchor point milestones

Evolutionary development with no
life-cycle architecture

6. Emphasis on system and life cycle activities and artifacts
Avoids premature suboptimization on hardware,
software, or development considerations

Relative amount in each cycle of
• hardware vs. software
• capability
• productization (alpha, beta, shrink-wrap, etc.)

Purely logical object-oriented
methods with operational,
performance, or cost risks

 25 January 2001

Using the Spiral Model for Evolutionary Acquisition 14

References
[Boehm 81] Boehm, B. Software Engineering Economics. New York, NY:

Prentice Hall, 1981.

[Boehm 88] Boehm, B. “A Spiral Model of Software Development and
Enhancement.” Computer (May 1988): 61-72.

[Boehm 89] Boehm, B. Software Risk Management. IEEE Computer Society
Press, 1989.

[Boehm 00a] Boehm, B. “Unifying Software Engineering and Systems
Engineering.” IEEE Computer (March 2000): 114-116.

[Boehm 00b] Barry Boehm, edited by Wilfred J. Hansen, “Spiral Development:
Experience, Principles, and Refinements,” Software Engineering
Institute, Carnegie Mellon University, Special Report CMU/SEI-00-
SR-08, ESC-SR-00-08, June, 2000.
http://www/cbs/spiral2000/february2000/BoehmSR.html

[Carr 93] Carr, M. J.; Konda, S. L.; Monarch, I.; Ulrich, F. C. & Walker, C.
F., "Taxonomy-Based Risk Identification", Software
Engineering Institute, Carnegie Mellon University, Technical
Report CMU/SEI-93-TR-6, ESC-TR-93-183, June, 1993.
http://www.sei.cmu.edu/legacy/risk/kit/tr06.93.pdf

[DoD 00] Department of Defense Instruction 5000.2, "Operation of the
Defense Acquisition System," September 2000.
http://www.acq.osd.mil/ap/i50002p.doc

[Hansen 00] Hansen, F.; Foreman, J.; Carney, D; Forrester, E.; Graettinger, C.;
Peterson, W.; and Place, P., "Spiral Development-Building the
Culture: A Report on the CSE-SEI Workshop February, 2000."
Software Engineering Institute, Carnegie Mellon University,
Special Report CMU/SEI-2000-SR-006, July 2000.
http://www/cbs/spiral2000/february2000/finalreport.html

[Hansen 01] Hansen, F.; Foreman, J.; Albert, C.; AxelBlatt, E.; Brownsword, L.
and Forrester, E. & Place, P., "Spiral Development and
Evolutionary Acquisition: The SEI-CSE Workshop, September,
2000," Software Engineering Institute, Carnegie Mellon
University, Special Report, in preparation.

[Hantos 00] Hantos, P. “From Spiral to Anchored Processes: A Wild Ride in
Lifecycle Architecting,” Proceedings, USC-SEI Spiral Experience
Workshop. Los Angeles, CA, Feb. 2000.
http://www.sei.cmu.edu/cbs/spiral2000/Hantos

[IEEE/EIA 98] IEEE and EIA, Industry Implementation of ISO/IEC 12207:
Software Life Cycle Processes-Implementation Considerations,
IEEE/EIA 12207.2 - 1997, April 1998.

http://www/cbs/spiral2000/february2000/BoehmSR.html
http://www.sei.cmu.edu/legacy/risk/kit/tr06.93.pdf
http://www.acq.osd.mil/ap/i50002p.doc
http://www/cbs/spiral2000/february2000/finalreport.html
http://www.sei.cmu.edu/cbs/spiral2000/Hantos

 25 January 2001

Using the Spiral Model for Evolutionary Acquisition 15

[Mehta 99] Mehta, N. MBASE Electronic Process Guide. USC-CSE, Los
Angeles, CA: Oct 1999.
http://sunset.usc.edu/research/MBASE/EPG

[Rechtin 96] Rechtin, E.; and Meier, M., The Art of Systems Architecting, CRC
Press, 1996

[Williams 99] Williams, R. C.; Pandelios, G. J. & Behrens, S.G., "Software Risk
Evaluation (SRE) Method Description (Version 2.0)," Software
Engineering Institute, Carnegie Mellon University, Technical
Report CMU/SEI-99-TR-029, ESC-TR-99-029, December, 1999.
http://www.sei.cmu.edu/pub/documents/99.reports/pdf/99tr029-
body.pdf

http://sunset.usc.edu/research/MBASE/EPG
http://www.sei.cmu.edu/pub/documents/99.reports/pdf/99tr029-body.pdf
http://www.sei.cmu.edu/pub/documents/99.reports/pdf/99tr029-body.pdf

	Understanding the Spiral Model
	as a Tool for Evolutionary Acquisition
	"Spiral Development" Definition and Context
	Spiral Essential 1: Concurrent Determination of Key Artifacts (Operational Concept, Requirements, Plans, Design, Code)

	Example: One-Second Response Time
	Hazardous Spiral Look-Alike: Violation of Waterfall Assumptions
	Spiral Essential 2: Each Cycle Does Objectives, Constraints, Alternatives, Risks, Review, Commitment to Proceed

	Example: Windows-Only COTS
	Hazardous Spiral Look-Alike: Excluding Key Stakeholders
	Spiral Essential 3: Level of Effort Driven by Risk Considerations

	Example: Pre-Ship Testing
	Hazardous Spiral Look-Alikes: Risk Insensitivity
	Spiral Essential 4: Degree of Detail Driven by Risk Considerations

	Example: Risk of Precise Specification
	Hazardous Spiral Look-Alikes: Insistence on Complete Specifications
	Spiral Essential 5: Use Anchor Point Milestones: LCO, LCA, IOC

	Example: Stud Poker Analogy
	Hazardous Look-Alike: Evolutionary Development without Life Cycle Architecture
	Spiral Essential 6: Emphasis on System and Life Cycle Activities and Artifacts

	Example: “Order Processing”
	Hazardous Spiral Look-Alikes: Logic-Only OO Designs
	Using the Spiral Model for Evolutionary Acquisition
	Summary
	R
	References

